Showing all 3 results

Data Mining for Business Analytics

$77.00

Data Mining for Business Analytics: Concepts, Techniques, and Applications in R presents an applied approach to data mining concepts and methods, using R software for illustration Readers will learn how to implement a variety of popular data mining algorithms in R (a free and open-source software) to tackle business problems and opportunities. This is the fifth version of this successful text, and the first using R. It covers both statistical and machine learning algorithms for prediction, classification, visualization, dimension reduction, recommender systems, clustering, text mining and network analysis. It also includes: Two new co-authors, Inbal Yahav and Casey Lichtendahl, who bring both expertise teaching business analytics courses using R, and data mining consulting experience in business and government Updates and new material based on feedback from instructors teaching MBA, undergraduate, diploma and executive courses, and from their students More than a dozen case studies demonstrating applications for the data mining techniques described End-of-chapter exercises that help readers gauge and expand their comprehension and competency of the material presented A companion website with more than two dozen data sets, and instructor materials including exercise solutions, PowerPoint slides, and case solutions www.dataminingbook.com Data Mining for Business Analytics: Concepts, Techniques, and Applications in R is an ideal textbook for graduate and upper-undergraduate level courses in data mining, predictive analytics, and business analytics. This new edition is also an excellent reference for analysts, researchers, and practitioners working with quantitative methods in the fields of business, finance, marketing, computer science, and information technology.

Out of stock

Data Mining for Business Analytics: Concepts, Techniques, and Applications with XLMiner 3rd Edition

Praise for the Second Edition ” full of vivid and thought-provoking anecdotes…needs to be read by anyone with a serious interest in research and marketing.” Research Magazine “Shmueli et al. have done a wonderful job in presenting the field of data mining – a welcome addition to the literature.” ComputingReviews.com “Excellent choice for business analysts…The book is a perfect fit for its intended audience.” Keith McCormick, Consultant and Author of SPSS Statistics For Dummies, Third Edition and SPSS Statistics for Data Analysis and Visualization ” extremely well organized, clearly written and introduces all of the basic ideas quite well.” Robert L. Phillips, Professor of Professional Practice, Columbia Business School Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition presents an applied approach to data mining and predictive analytics with clear exposition, hands-on exercises, and real-life case studies. Readers will work with all of the standard data mining methods using the Microsoft(R) Office Excel(R) add-in XLMiner(R) to develop predictive models and learn how to obtain business value from Big Data. Featuring updated topical coverage on text mining, social network analysis, collaborative filtering, ensemble methods, uplift modeling and more, the Third Edition also includes: * Real-world examples to build a theoretical and practical understanding of key data mining methods * End-of-chapter exercises that help readers better understand the presented material * Data-rich case studies to illustrate various applications of data mining techniques * Completely new chapters on social network analysis and text mining * A companion site with additional data sets, instructors material that include solutions to exercises and case studies, and Microsoft PowerPoint(R) slides * Free 140-day license to use XLMiner for Education software Data Mining for Business Analytics: Concepts, Techniques, and Applications in XLMiner(R), Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses as well as professional programs on data mining, predictive modeling, and Big Data analytics. The new edition is also a unique reference for analysts, researchers, and practitioners working with predictive analytics in the fields of business, finance, marketing, computer science, and information technology.

Out of stock