Showing 1–12 of 27 results

Reinforcement Learning and Dynamic Programming Using Function Approximators


From household appliances to applications in robotics, engineered systems involving complex dynamics can only be as effective as the algorithms that control them. While Dynamic Programming (DP) has provided researchers with a way to optimally solve decision and control problems involving complex dynamic systems, its practical value was limited by algorithms that lacked the capacity to scale up to realistic problems. However, in recent years, dramatic developments in Reinforcement Learning (RL), the model-free counterpart of DP, changed our understanding of what is possible. Those developments led to the creation of reliable methods that can be applied even when a mathematical model of the system is unavailable, allowing researchers to solve challenging control problems in engineering, as well as in a variety of other disciplines, including economics, medicine, and artificial intelligence. Reinforcement Learning and Dynamic Programming Using Function Approximators provides a comprehensive and unparalleled exploration of the field of RL and DP. With a focus on continuous-variable problems, this seminal text details essential developments that have substantially altered the field over the past decade. In its pages, pioneering experts provide a concise introduction to classical RL and DP, followed by an extensive presentation of the state-of-the-art and novel methods in RL and DP with approximation. Combining algorithm development with theoretical guarantees, they elaborate on their work with illustrative examples and insightful comparisons. Three individual chapters are dedicated to representative algorithms from each of the major classes of techniques: value iteration, policy iteration, and policy search. The features and performance of these algorithms are highlighted in extensive experimental studies on a range of control applications. The recent development of applications involving complex systems has led to a surge of interest in RL and DP methods and the subsequent need for a quality resource on the subject. For graduate students and others new to the field, this book offers a thorough introduction to both the basics and emerging methods. And for those researchers and practitioners working in the fields of optimal and adaptive control, machine learning, artificial intelligence, and operations research, this resource offers a combination of practical algorithms, theoretical analysis, and comprehensive examples that they will be able to adapt and apply to their own work. Access the authors’ website at for additional material, including computer code used in the studies and information concerning new developments.

Control of Nonlinear Systems via PI, PD and PID: Stability and Performance


The purpose of this book is to give an exposition of recently adaptive PI/PD/PID control design for nonlinear systems. Since PI/PD/PID control is simple in structure and inexpensive in implementation, it has been undoubtedly the most widely employed controller in industry. In fact, PI/PD/PID controllers are sufficient for many control problems, particularly when process dynamics are benign and the performance requirements are modest. The book focuses on how to design general PI/PD/PID controller with self-tuning gains for different systems, which includes SISO nonlinear system, SISO nonaffine system and MIMO nonlinear system.

Data Converters, Phase-Locked Loops, and Their Applications


With a focus on designing and verifying CMOS analog integrated circuits, the book reviews design techniques for mixed-signal building blocks, such as Nyquist and oversampling data converters, and circuits for signal generation, synthesis, and recovery. The text details all aspects, from specifications to the final circuit, of the design of digital-to-analog converters, analog-to-digital converters, phase-locked loops, delay-locked loops, high-speed input/output link transceivers, and class D amplifiers. Special emphasis is put on calibration methods that can be used to compensate circuit errors due to device mismatches and semiconductor process variations.

IoT and Low-Power Wireless: Circuits, Architectures, and Techniques


The book offers unique insight into the modern world of wireless communication that included 5G generation, implementation in Internet of Things (IoT), and emerging biomedical applications. To meet different design requirements, gaining perspective on systems is important. Written by international experts in industry and academia, the intended audience is practicing engineers with some electronics background. It presents the latest research and practices in wireless communication, as industry prepares for the next evolution towards a trillion interconnected devices. The text further explains how modern RF wireless systems may handle such a large number of wireless devices.

High-Speed and Lower Power Technologies


This book explores the most up-to-date research trends and achievements on low-power and high-speed technologies in both electronics and optics. It offers unique insight into low-power and high-speed approaches ranging from devices, ICs, sub-systems and networks that can be exploited for future mobile devices, 5G networks, and Internet of Things (IoT). The interconnections between modules or servers using electrical and optical technologies and the packaging for lower-power system and networks are taken into consideration. Written by top international experts in both industry and academia, the book discusses new devices, such as Si-on-chip laser, interconnection using graphene ribbons and 2-dimensional semiconductors, and low-power FPGA and network processors.

Nickel in Soils and Plants


Nickel (Ni), the fifth common element on the earth is widespread in the environment. Recently Ni has been proved essential for normal growth of many organisms, and at the same time Ni can become toxic to organisms when high in concentration. In several parts of the world, high Ni concentrations are causing serious environmental impacts. This book will be the first to discuss the problems related to Ni presence and raise the need for full investigation and more efforts to support this goal. It will present the recent advances in research on Ni nutrition of plants, Ni contamination of the environment–that is, soils, waters and plants–and methods of remediation.

Out of stock

Handbook of Environmental and Ecological Statistics

This handbook focuses on the enormous literature applying statistical methodology and modelling to environmental and ecological processes. The 21st century statistics community has become increasingly interdisciplinary, bringing a large collection of modern tools to all areas of application in environmental processes. In addition, the environmental community has substantially increased its scope of data collection including observational data, satellite-derived data, and computer model output. The resultant impact in this latter community has been substantial; no longer are simple regression and analysis of variance methods adequate. The contribution of this handbook is to assemble a state-of-the-art view of this interface. Features: An internationally regarded editorial team. A distinguished collection of contributors. A thoroughly contemporary treatment of a substantial interdisciplinary interface. Written to engage both statisticians as well as quantitative environmental researchers. 34 chapters covering methodology, ecological processes, environmental exposure, and statistical methods in climate science. About the Editors: Alan E. Gelfand is the James B. Duke Professor of Statistical Science at Duke University. He is a leader in Bayesian spatial modeling and analysis including a successful book in this area with Banerjee and Carlin. Montse Fuentes is the Dean of the Virginia Commonwealth University College of Humanities and Sciences and a Professor of Statistics. She leads a broad research program in statistical methods for spatial large scale environmental health studies. Jennifer A. Hoeting is Professor of Statistics at Colorado State University. Her research is focused on Bayesian, computational, and spatial statistics applied to address challenging problems in ecology. Richard L. Smith is the Mark L. Reed III Distinguished Professor of Statistics and Professor of Biostatistics at the University of North Carolina. His research covers theoretical and applied aspects of environmental statistics including extreme value theory, spatial statistics and applications to climate change, air pollution and health.

Out of stock

Chemical Ecology: The Ecological Impacts of Marine Natural Products


During the past 20 years marine chemical ecology emerged as a respected field of study providing a better understanding of the role natural products play in organisms and their environments. Ample data in this book advocates the conservation of marine environments for future drug discovery efforts while sustaining the health of marine environments. Marine chemical ecology has expanded to include research in the areas of predator-prey interactions, marine microbial chemical ecology, and seasonal and geographical distribution of marine natural products.

Systems Immunology: An Introduction to Modeling Methods for Scientists


“New experimental techniques in immunology have produced large and complex data sets that require quantitative modeling for analysis. This book provides a complete overview of computational immunology, from basic concepts to mathematical modeling at the single molecule, cellular, organism, and population levels. It showcases modern mechanistic models and their use in making predictions, designing experiments, and elucidating underlying biochemical processes. It begins with an introduction to data analysis, approximations, and assumptions used in model building. Core chapters address models and methods for studying immune responses, with fundamental concepts clearly defined”–

Polarons and Bipolarons: An Introduction


This book provides a comprehensive review of the subject of polaron and a thorough account of the sophisticated theories of the polaron. It explains the concept of the polaron physics in as simple a manner as possible and presents the theoretical techniques and mathematical derivations in great detail. Anybody who follows this book will develop a solid command over the subject both conceptually and technically and will be in a position to contribute to this field.

Relativistic Magnetrons


The first experiments with relativistic magnetrons (PM), resulted in notable results, in the USA – Massachusetts Institute of Technology and the USSR – Institute of Applied Physics. Academy of Sciences of the USSR (Gorky), and the Nuclear Physics Research Institute at the Tomsk State University, hundreds of megawatts to several gigawatts with an efficiency of 10-30% were obtained. Relativistic high-frequency electronics has now become one of the fastest growing areas of scientific research. This reference is devoted to theoretical and experimental studies of relativistic magnetrons and is written by a leading expert who worked directly on these systems.

Superfluidity and Superconductivity


Superfluidity and Superconductivity, Third Edition introduces the low-temperature phenomena of superfluidity and superconductivity from a unified viewpoint. The book stresses the existence of a macroscopic wave function as a central principle, presents an extensive discussion of macroscopic theories, and includes full descriptions of relevant experimental results throughout. This edition also features an additional chapter on high-temperature superconductors. With problems at the end of most chapters as well as the careful elaboration of basic principles, this comprehensive survey of experiment and theory provides an accessible and invaluable foundation for graduate students studying low-temperature physics as well as senior undergraduates taking specialized courses.